Aluminum alloys and resin (materials with a large difference between the linear expansion coefficients) demand sufficient consideration (as there is a risk of failure due to the increased clearance with the oil seal at high temperatures).


The hydrodynamic ribsa) provided in one direction on the air side face of the lip ensure higher sealing performance. Perfect Seal The hydrodynamic ribsa) provided in two directions on the air side face of the lip ensure higher sealing performance (higher sealing performance in both rotational directions of the shaft).



Operating temperatures for engine oil seals (see Fig. 14.11 and cross-section of lip seal with garter spring in Fig. 14.22) vary widely, depending on engine design and location within the engine. Typically, the rear crankshaft seal is subjected to much higher temperatures than the front seal. Oil sump temperatures vary considerably, depending on provisions for oil cooling. This allows use of hydrogenated nitrile (HNBR), silicone, or acrylic elastomers for some seals in relatively low-temperature environments (120–140°C or 250–284°F). Standard fluoroelastomers (FKM), bisphenol-cured VDF/HFP/TFE terpolymers with 68–69% fluorine content, perform well in oil service up to about 160°C (320°F). More resistant fluoroelastomers are necessary for reliable long-term performance in more severe environments.

In the automotive industry, spark plugs are essential for the proper functioning of internal combustion engines. Whether in gasoline or diesel engines, spark plugs play a crucial role in igniting the air-fuel mixture, initiating the combustion process that powers the vehicle. High-performance spark plugs designed for specific automotive applications can enhance engine performance, fuel efficiency, and emissions control, contributing to the overall reliability and longevity of the vehicle.